In mathematics, an empty function is a function whose domain is the empty set ∅. For each set A, there is exactly one such empty function
The graph of an empty function is a subset of the Cartesian product ∅ × A. Since the product is empty the only such subset is the empty set ∅. The empty subset is a valid graph since for every x in the domain ∅ there is a unique y in the codomain A such that (x, y) ∈ ∅ × A. This statement is an example of a vacuous truth since "there is no x in the domain."
The existence of an empty function from ∅ to ∅ is required to make the category of sets a category, because in a category, each object needs to have an "identity morphism", and only the empty function is the identity on the object ∅. The existence of a unique empty function from ∅ into each set A means that the empty set is an initial object in the category of sets. In terms of cardinal arithmetic, it means that k0 = 1 for every cardinal number k—particularly profound when k = 0 to illustrate the strong statement of indices pertaining to 0.