Emergency evacuation is the immediate and urgent movement of people away from the threat or actual occurrence of a hazard. Examples range from the small scale evacuation of a building due to a storm or fire to the large scale evacuation of a district because of a flood, bombardment or approaching weather system. In situations involving hazardous materials or possible contamination, evacuees may be decontaminated prior to being transported out of the contaminated area.
Evacuations may be carried out before, during or after disasters such as:
Other reasons include:
Emergency evacuation plans are developed to ensure the safest and most efficient evacuation time of all expected residents of a structure, city, or region. A benchmark "evacuation time" for different hazards and conditions is established. These benchmarks can be established through using best practices, regulations, or using simulations, such as modeling the flow of people in a building, to determine the benchmark. Proper planning will use multiple exits, contra-flow lanes, and special technologies to ensure full, fast and complete evacuation. Consideration for personal situations which may affect an individual's ability to evacuate is taken into account, including alarm signals that use both aural and visual alerts, and also evacuation equipment such as sleds, pads, and chairs for non-ambulatory people. Regulations such as building codes can be used to reduce the possibility of panic by allowing individuals to process the need to self-evacuate without causing alarm . Proper planning will implement an all-hazards approach so that plans can be reused for multiple hazards that could exist.
The sequence of an evacuation can be divided into the following phases:
The time for the first four phases is usually called pre-movement time.
The particular phases are different for different objects, e.g., for ships a distinction between assembly and embarkation (to boats or rafts) is made. These are separate from each other. The decision whether to enter the boats or rafts is thus usually made after assembly is completed.
The strategy of individuals in evacuating buildings was investigated by John Abrahams in 1994. The independent variables were the complexity of the building and the movement ability of the individuals. With increasing complexity and decreasing motion ability, the strategy changes from "fast egress", through "slow egress" and "move to safe place inside building" (such as a staircase), to "stay in place and wait for help". The last strategy is the notion of using a designated Safe Haven on the floor. This is a section of the building that is reinforced to protect against specific hazards, such as fire, smoke or structural collapse. Some hazards may have Safe Havens on each floor, while a hazard such as a tornado, may have a single Safe Haven or safe room. Typically persons with limited mobility are requested to report to a Safe Haven for rescue by first responders. In most buildings, the Safe Haven will be in the stairwell.