*** Welcome to piglix ***

Embedded submanifold


In mathematics, a submanifold of a manifold M is a subset S which itself has the structure of a manifold, and for which the inclusion map SM satisfies certain properties. There are different types of submanifolds depending on exactly which properties are required. Different authors often have different definitions.

In the following we assume all manifolds are differentiable manifolds of class Cr for a fixed r ≥ 1, and all morphisms are differentiable of class Cr.

An immersed submanifold of a manifold M is the image S of an immersion map f: NM; in general this image will not be a submanifold as a subset, and an immersion map need not even be injective (one-to-one) – it can have self-intersections.

More narrowly, one can require that the map f: NM be an inclusion (one-to-one), in which we call it an injective immersion, and define an immersed submanifold to be the image subset S together with a topology and differential structure such that S is a manifold and the inclusion f is a diffeomorphism: this is just the topology on N, which in general will not agree with the subset topology: in general the subset S is not a submanifold of M, in the subset topology.

Given any injective immersion f : NM the image of N in M can be uniquely given the structure of an immersed submanifold so that f : Nf(N) is a diffeomorphism. It follows that immersed submanifolds are precisely the images of injective immersions.


...
Wikipedia

...