An electrostatic loudspeaker (ESL) is a loudspeaker design in which sound is generated by the force exerted on a membrane suspended in an electrostatic field.
The speakers use a thin flat diaphragm usually consisting of a plastic sheet coated with a conductive material such as graphite sandwiched between two electrically conductive grids, with a small air gap between the diaphragm and grids. For low distortion operation, the diaphragm must operate with a constant charge on its surface, rather than with a constant voltage (charge and voltage are not the same thing). This is accomplished by either or both of two techniques: the diaphragm's conductive coating is chosen and applied in a manner to give it a very high surface resistivity, and/or a large value resistor is placed in series between the EHT (Extra High Tension or Voltage) power supply and the diaphragm (resistor not shown in the diagram here). However, the latter technique will still allow distortion as the charge will migrate across the diaphragm to the point closest to the "grid" or electrode thereby increasing the force moving the diaphragm, this will occur at audio frequency so the diaphragm requires a high resistance (megohms) to slow the movement of charge for a practical speaker.
The diaphragm is usually made from a polyester film (thickness 2–20 µm) with exceptional mechanical properties, such as PET film. By means of the conductive coating and an external high voltage supply the diaphragm is held at a DC potential of several kilovolts with respect to the grids. The grids are driven by the audio signal; front and rear grid are driven in antiphase. As a result a uniform electrostatic field proportional to the audio signal is produced between both grids. This causes a force to be exerted on the charged diaphragm, and its resulting movement drives the air on either side of it.