Electromagnetic radiation can be classified into two types: ionizing radiation and non-ionizing radiation, based on the capability of a single photon with more than 10 eV energy to ionize oxygen or break chemical bonds. Ultraviolet and higher frequencies, such as X-rays or gamma rays are ionizing, and these pose their own special hazards: see radiation and radiation poisoning. The electric currents that flow through power sockets have associated line-frequency electromagnetic fields. By far the most common health hazard of radiation is sunburn, which causes over one million new skin cancers annually.
Very strong radiation can induce current capable of delivering an electric shock to persons or animals. It can also overload and destroy electrical equipment. The induction of currents by oscillating magnetic fields is also the way in which solar storms disrupt the operation of electrical and electronic systems, causing damage to and even the explosion of power distribution transformers, blackouts (as occurred in 1989), and interference with electromagnetic signals (e.g. radio, TV, and telephone signals).
Extremely high power electromagnetic radiation can cause electric currents strong enough to create sparks (electrical arcs) when an induced voltage exceeds the breakdown voltage of the surrounding medium (e.g. air at 3.0 MV/m). These sparks can then ignite flammable materials or gases, possibly leading to an explosion.
This can be a particular hazard in the vicinity of explosives or pyrotechnics, since an electrical overload might ignite them. This risk is commonly referred to as Hazards of Electromagnetic Radiation to Ordnance (HERO) by the United States Navy (USN). United States Military Standard 464A (MIL-STD-464A) mandates assessment of HERO in a system, but USN document OD 30393 provides design principles and practices for controlling electromagnetic hazards to ordnance.