Electronic packaging is a major discipline within the field of electronic engineering, and includes a wide variety of technologies. It refers to enclosures and protective features built into the product itself, and not to shipping containers. It applies both to end products and to components. Packaging of an electronic system must consider protection from mechanical damage, cooling, radio frequency noise emission, protection from electrostatic discharge, maintenance, operator convenience, and cost. Prototypes and industrial equipment made in small quantities may use standardized commercially available enclosures such as card cages or prefabricated boxes. Mass-market consumer devices may have highly specialized packaging to increase consumer appeal. The same electronic system may be packaged as a portable device or adapted for fixed mounting in an instrument rack or permanent installation. Packaging for aerospace, marine, or military systems imposes different types of design criteria.
Punched and formed sheet metal is one of the oldest types of electronic packaging. It can be mechanically strong, provides electromagnetic shielding when the product requires that feature, and is easily made for prototypes and small production runs with little custom tooling expense.
Gasketed metal castings are sometimes used to package electronic equipment for exceptionally severe environments, such as in heavy industry, aboard ship, or deep under water. Aluminum die castings are more common than iron or steel sand castings.
Electronic packages are sometimes made by machining solid blocks of metal, usually aluminum, into complex shapes. They are fairly common in microwave assemblies for aerospace use, where precision transmission lines require complex metal shapes, in combination with hermetically sealed housings. Quantities tend to be small; sometimes only one unit of a custom design is required. Piece part costs are high, but there is little or no cost for custom tooling, and first-piece deliveries can take as little as half a day. The tool of choice is a numerically controlled vertical milling machine, with automatic translation of computer-aided design (CAD) files to toolpath command files.
Molded plastic cases and structural parts can be made by a variety of methods, offering tradeoffs in piece part cost, tooling cost, mechanical and electrical properties, and ease of assembly. Examples are injection molding, transfer molding, vacuum forming, and die cutting. Pl can be post-processed to provide conductive surfaces when confused.
Formally called "encapsulation", potting consists of immersing the part or assembly in a liquid resin, and then curing it. Potting can be done in a pre-molded potting shell, or directly in a mold. Today it is most widely used to protect semiconductor components from moisture and mechanical damage, and to serve as a mechanical structure holding the lead frame and the chip together. In earlier times it was often used to discourage reverse engineering of proprietary products built as printed circuit modules. It is also commonly used in high voltage products to allow live parts to be placed much closer together, so that the product can be smaller; also, to keep dirt and conductive contaminants such as impure water out of sensitive areas. Another use is to protect deep-submergence items such as sonar transducers from collapsing under extreme pressure, by filling all voids. Potting can be rigid or soft. When void-free potting is required, it's common practice to place the product in a vacuum chamber while the resin is still liquid, hold a vacuum for several minutes to draw the air out of internal cavities and the resin itself, then release the vacuum. Atmospheric pressure collapses the voids and forces the liquid resin into all internal spaces. Vacuum potting works best with resins that cure by polymerization, rather than solvent evaporation.