*** Welcome to piglix ***

Electron-beam lithography


Electron-beam lithography (often abbreviated as e-beam lithography) is the practice of scanning a focused beam of electrons to draw custom shapes on a surface covered with an electron-sensitive film called a resist (exposing). The electron beam changes the solubility of the resist, enabling selective removal of either the exposed or non-exposed regions of the resist by immersing it in a solvent (developing). The purpose, as with photolithography, is to create very small structures in the resist that can subsequently be transferred to the substrate material, often by etching.

The primary advantage of electron-beam lithography is that it can draw custom patterns (direct-write) with sub-10 nm resolution. This form of maskless lithography has high resolution and low throughput, limiting its usage to photomask fabrication, low-volume production of semiconductor devices, and research and development.

Electron-beam lithography systems used in commercial applications are dedicated e-beam writing systems that are very expensive (> US$1M). For research applications, it is very common to convert an electron microscope into an electron beam lithography system using a relatively low cost accessories (< US$100K). Such converted systems have produced linewidths of ~20 nm since at least 1990, while current dedicated systems have produced linewidths on the order of 10 nm or smaller.

Electron-beam lithography systems can be classified according to both beam shape and beam deflection strategy. Older systems used Gaussian-shaped beams and scanned these beams in a raster fashion. Newer systems use shaped beams, which may be deflected to various positions in the writing field (this is also known as vector scan).

Lower-resolution systems can use thermionic sources, which are usually formed from lanthanum hexaboride. However, systems with higher-resolution requirements need to use field electron emission sources, such as heated W/ZrO2 for lower energy spread and enhanced brightness. Thermal field emission sources are preferred over cold emission sources, in spite of the former's slightly larger beam size, because they offer better stability over typical writing times of several hours.


...
Wikipedia

...