*** Welcome to piglix ***

Electrical stimulation


Functional electrical stimulation (FES) is a technique that uses low energy electrical pulses to artificially generate body movements in individuals who have been paralyzed due to injury to the central nervous system. More specifically, FES can be used to generate muscle contraction in otherwise paralyzed limbs to produce functions such as grasping, walking, bladder voiding and standing. This technology was originally used to develop neuroprostheses that were implemented to permanently substitute impaired functions in individuals with spinal cord injury (SCI), head injury, stroke and other neurological disorders. In other words, a consumer would use the device each time he/she wanted to generate a desired function. FES is sometimes also referred to as neuromuscular electrical stimulation ^(NMES).

In recent years FES technology has been used to deliver therapies to retrain voluntary motor functions such as grasping, reaching and walking. In this embodiment, FES is used as a short-term therapy, the objective of which is restoration of voluntary function and not lifelong dependence on the FES device, hence the name functional electrical stimulation therapy, FES therapy (FET or FEST). In other words, the FEST is used as a short-term intervention to help the central nervous system of the consumer to re-learn how to execute impaired functions, instead of making the consumer dependent on neuroprostheses for the rest of her/his life.

Neurons are electrically active cells. In neurons, information is coded and transmitted as a series of electrical impulses called action potentials, which represent a brief change in cell electric potential of approximately 80–90 mV. Nerve signals are frequency modulated; i.e. the number of action potentials that occur in a unit of time is proportional to the intensity of the transmitted signal. Typical action potential frequency is between 4 and 12 Hz. An electrical stimulation can artificially elicit this action potential by changing the electric potential across a nerve cell membrane (this also includes the nerve axon) by inducing electrical charge in the immediate vicinity of the outer membrane of the cell.


...
Wikipedia

...