Galvanic isolation is a principle of isolating functional sections of electrical systems to prevent current flow; no direct conduction path is permitted. Energy or information can still be exchanged between the sections by other means, such as capacitance, induction or electromagnetic waves, or by optical, acoustic or mechanical means.
Galvanic isolation is used where two or more electric circuits must communicate, but their grounds may be at different potentials. It is an effective method of breaking ground loops by preventing unwanted current from flowing between two units sharing a ground conductor. Galvanic isolation is also used for safety, preventing accidental current from reaching ground through a person's body.
Transformers couple by magnetic flux. The primary and secondary windings of a transformer are not connected to each other (an autotransformer has a conductive connection between its windings and so does not provide isolation). The voltage difference that may safely be applied between windings without risk of breakdown (the isolation voltage) is specified in kilovolts by an industry standard. The same applies to transductors. While transformers are usually used to change voltages, isolation transformers with a 1:1 ratio are used in safety applications.
If two electronic systems have a common ground, they are not galvanically isolated. The common ground might not normally and intentionally have connection to functional poles, but might become connected. For this reason isolation transformers do not supply a GND/earth pole.
Opto-isolators transmit information by light waves. The sender (light source) and receiver (photosensitive device) are not electrically connected; typically they are held in place within a matrix of transparent, insulating plastic.