Common symbols
|
C |
---|---|
SI unit | farad |
Capacitance is the ability of a body to store an electric charge. There are two closely related notions of capacitance--self capacitance and mutual capacitance--that are usually both designated by the same term: capacitance. Any object that can be electrically charged exhibits self capacitance. A material with a large self capacitance holds more electric charge at a given voltage, than one with low capacitance. The notion of mutual capacitance is particularly important for understanding the operations of the capacitor, one of the three fundamental electronic components (along with resistors and inductors).
The capacitance is a function only of the geometry of the design (e.g. area of the plates and the distance between them) and the permittivity of the dielectric material between the plates of the capacitor. For many dielectric materials, the permittivity and thus the capacitance, is independent of the potential difference between the conductors and the total charge on them.
The SI unit of capacitance is the farad (symbol: F), named after the English physicist Michael Faraday. A 1 farad capacitor, when charged with 1 coulomb of electrical charge, has a potential difference of 1 volt between its plates.
In electrical circuits, the term capacitance is usually a shorthand for the mutual capacitance between two adjacent conductors, such as the two plates of a capacitor. However, for an isolated conductor there also exists a property called self-capacitance, which is the amount of electric charge that must be added to an isolated conductor to raise its electric potential by one unit (i.e. one volt, in most measurement systems). The reference point for this potential is a theoretical hollow conducting sphere, of infinite radius, centered inside the conductor.
Mathematically, the self-capacitance of a conductor is defined by