A railway electrification system supplies electric power to railway trains and trams without an on-board prime mover or local fuel supply. Electrification has many advantages but requires significant capital expenditure. Selection of an electrification system is based on economics of energy supply, maintenance, and capital cost compared to the revenue obtained for freight and passenger traffic. Different systems are used for urban and intercity areas; some electric locomotives can switch to different supply voltages to allow flexibility in operation.
Electric railways use electric locomotives to haul passengers or freight in separate cars or electric multiple units, passenger cars with their own motors. Electricity is typically generated in large and relatively efficient generating stations, transmitted to the railway network and distributed to the trains. Some electric railways have their own dedicated generating stations and transmission lines but most purchase power from an electric utility. The railway usually provides its own distribution lines, switches and transformers.
Power is supplied to moving trains with a (nearly) continuous conductor running along the track that usually takes one of two forms.
In comparison to the principal alternative, the diesel engine, electric railways offer substantially better energy efficiency, lower emissions and lower operating costs. Electric locomotives are usually quieter, more powerful, and more responsive and reliable than diesels. They have no local emissions, an important advantage in tunnels and urban areas. Some electric traction systems provide regenerative braking that turns the train's kinetic energy back into electricity and returns it to the supply system to be used by other trains or the general utility grid. While diesel locomotives burn petroleum, electricity is generated from diverse sources including many that do not produce carbon dioxide such as nuclear power and renewable forms including hydroelectric, geothermal, wind and solar.