*** Welcome to piglix ***

Eisenmenger syndrome

Eisenmenger syndrome
Eyzenmenger sindromu.jpg
Schematic drawing showing the principles of Eisenmenger's syndrome
Classification and external resources
Specialty medical genetics
ICD-10 Q21.8
ICD-9-CM 745.4 (CDC/BPA 745.410)
DiseasesDB 4143
MedlinePlus 007317
eMedicine article/154555
MeSH D004541
[]

Eisenmenger's syndrome (or ES, Eisenmenger's reaction, Eisenmenger physiology, or tardive cyanosis) is defined as the process in which a long-standing left-to-right cardiac shunt caused by a congenital heart defect (typically by a ventricular septal defect, atrial septal defect, or less commonly, patent ductus arteriosus) causes pulmonary hypertension and eventual reversal of the shunt into a cyanotic right-to-left shunt. Because of the advent of fetal screening with echocardiography early in life, the incidence of heart defects progressing to Eisenmenger's has decreased.

Eisenmenger's syndrome in a pregnant mother can cause serious complications, though successful delivery has been reported. Maternal mortality ranges from 30% to 60%, and may be attributed to fainting spells, thromboembolism, hypovolemia, hemoptysis or preeclampsia. Most deaths occur either during or within the first weeks after delivery. Pregnant women with Eisenmenger syndrome should be hospitalized after the 20th week of pregnancy - or earlier if clinical deterioration occurs.

Signs and symptoms of Eisenmenger syndrome include the following:

A number of congenital heart defects can cause Eisenmenger syndrome, including atrial septal defects, ventricular septal defects, patent ductus arteriosus, and more complex types of acyanotic heart disease.

The reason Eisenmenger's syndrome often presents later in life can be explained by alterations of the normal physiology of the heart and the maladaptive responses that occur over time. The larger and more muscular left side of the heart must generate the high pressure required to supply blood to the extensive, high-resistance systemic circulation. In contrast, the smaller, right side of the heart must generate a much lower pressure in order to pass blood through the low-resistance, high compliance circulation of the lungs. The lungs are able to accomplish this low-resistance circulation largely due to the fact that the length of the pulmonary circulation is smaller, and because much of the circuitry is in parallel rather than in series.


...
Wikipedia

...