In mathematics, a sequence of n real numbers can be understood as a location in n-dimensional space. When n = 8, the set of all such locations is called 8-dimensional space. Often such spaces are studied as vector spaces, without any notion of distance. Eight-dimensional Euclidean space is eight-dimensional space equipped with a Euclidean metric, which is defined by the dot product.
More generally the term may refer to an eight-dimensional vector space over any field, such as an eight-dimensional complex vector space, which has 16 real dimensions. It may also refer to an eight-dimensional manifold such as an 8-sphere, or a variety of other geometric constructions.
A polytope in eight dimensions is called an 8-polytope. The most studied are the regular polytopes, of which there are only three in eight dimensions: the 8-simplex, 8-cube, and 8-orthoplex. A broader family are the uniform 8-polytopes, constructed from fundamental symmetry domains of reflection, each domain defined by a Coxeter group. Each uniform polytope is defined by a ringed Coxeter-Dynkin diagram. The 8-demicube is a unique polytope from the D8 family, and 421, 241, and 142 polytopes from the E8 family.