*** Welcome to piglix ***

Ehrhart polynomial


In mathematics, an integral polytope has an associated Ehrhart polynomial that encodes the relationship between the volume of a polytope and the number of integer points the polytope contains. The theory of Ehrhart polynomials can be seen as a higher-dimensional generalization of Pick's theorem in the Euclidean plane.

These polynomials are named after Eugène Ehrhart who studied them in the 1960s.

Informally, if P is a polytope, and tP is the polytope formed by expanding P by a factor of t in each dimension, then L(P, t) is the number of integer lattice points in tP.

More formally, consider a lattice L in Euclidean space n and a d-dimensional polytope P in n with the property that all vertices of the polytope are points of the lattice. (A common example is L = ℤn and a polytope for which all vertices have integer coordinates.) For any positive integer t, let tP be the t-fold dilation of P (the polytope formed by multiplying each vertex coordinate, in a basis for the lattice, by a factor of t), and let

be the number of lattice points contained in the polytope tP. Ehrhart showed in 1962 that L is a rational polynomial of degree d in t, i.e. there exist rational numbers a0,...,ad such that:


...
Wikipedia

...