The Efimov effect is an effect in the quantum mechanics of few-body systems predicted by the Russian theoretical physicist V. N. Efimov in 1970. Efimov’s effect is where three identical bosons interact, with the prediction of an infinite series of excited three-body energy levels when a two-body state is exactly at the dissociation threshold. One corollary is that there exist bound states (called Efimov states) of three bosons even if the two-particle attraction is too weak to allow two bosons to form a pair. A (three-particle) Efimov state, where the (two-body) sub-systems are unbound, are often depicted symbolically by the Borromean rings. This means that if one of the particles is removed, the remaining two fall apart. In this case, the Efimov state is also called a Borromean state.
Efimov predicted that, as the pair interactions among three identical bosons approach resonance—that is, as the binding energy of some two-body bound state approaches zero or the scattering length of such a state becomes infinite—the three-body spectrum exhibits an infinite sequence of bound states whose scattering lengths and binding energies each form a geometric progression