The energy released from a nuclear weapon detonated in the troposphere can be divided into four basic categories:
Depending on the design of the weapon and the environment in which it is detonated the energy distributed to these categories can be increased or decreased. The blast effect is created by the coupling of immense amounts of energy, spanning the electromagnetic spectrum, with the surroundings. Locations such as submarine, ground burst, air burst, or exo-atmospheric determine how much energy is produced as blast and how much as radiation. In general, denser media around the bomb, like water, absorb more energy, and create more powerful shockwaves while at the same time limiting the area of its effect.
When an air burst occurs, lethal blast and thermal effects proportionally scale much more rapidly than lethal radiation effects, as higher and higher yield nuclear weapons are used.
The physical-damage mechanisms of a nuclear weapon (blast and thermal radiation) are identical to those of conventional explosives, but the energy produced by a nuclear explosive is millions of times more powerful per gram and the temperatures reached are briefly in the tens of millions of degrees.
Energy from a nuclear explosive is initially released in several forms of penetrating radiation. When there is a surrounding material such as air, rock, or water, this radiation interacts with and rapidly heats it to an equilibrium temperature (i.e. so that the matter is at the same temperature as the atomic bomb's matter). This causes vaporization of surrounding material resulting in its rapid expansion. Kinetic energy created by this expansion contributes to the formation of a shockwave. When a nuclear detonation occurs in air near sea level, much of the released energy interacts with the atmosphere and creates a shockwave which expands spherically from the center. Intense thermal radiation at the hypocenter forms a nuclear fireball and if the burst is low enough, it is often associated with a mushroom cloud. In a burst at high altitude, where the air density is low, more energy is released as ionizing gamma radiation and x-rays than an atmosphere-displacing shockwave.