*** Welcome to piglix ***

Edward Lorenz

Edward Norton Lorenz
Edward lorenz.jpg
Edward Norton Lorenz
Born (1917-05-23)May 23, 1917
West Hartford, Connecticut, United States
Died April 16, 2008(2008-04-16) (aged 90)
Cambridge, Massachusetts, United States
Residence United States
Fields Mathematics and Meteorology
Institutions Massachusetts Institute of Technology
Alma mater Dartmouth College (BA, 1938)
Harvard University (MA, 1940)
Massachusetts Institute of Technology (SM, 1943; ScD, 1948)
Thesis A Method of Applying the Hydrodynamic and Thermodynamic Equations to Atmospheric Models (1948)
Doctoral advisor James Murdoch Austin
Doctoral students Kevin E. Trenberth
William D. Sellers
Known for Chaos theory
Lorenz attractor
Butterfly effect
Notable awards Crafoord Prize (1983)
Kyoto Prize (1991)
Lomonosov Gold Medal (2004)

Edward Norton Lorenz (May 23, 1917 – April 16, 2008) was an American mathematician, meteorologist, and a pioneer of chaos theory, along with Mary Cartwright. He introduced the strange attractor notion and coined the term butterfly effect.

Lorenz was born in West Hartford, Connecticut. He studied mathematics at both Dartmouth College in New Hampshire and Harvard University in Cambridge, Massachusetts. From 1942 until 1946, he served as a meteorologist for the United States Army Air Corps. After his return from World War II, he decided to study meteorology. Lorenz earned two degrees in the area from the Massachusetts Institute of Technology where he later was a professor for many years. He was a Professor Emeritus at MIT from 1987 until his death.

During the 1950s, Lorenz became skeptical of the appropriateness of the linear statistical models in meteorology, as most atmospheric phenomena involved in weather forecasting are non-linear. His work on the topic culminated in the publication of his 1963 paper "Deterministic Nonperiodic Flow" in Journal of the Atmospheric Sciences, and with it, the foundation of chaos theory. He states in that paper:

Two states differing by imperceptible amounts may eventually evolve into two considerably different states ... If, then, there is any error whatever in observing the present state—and in any real system such errors seem inevitable—an acceptable prediction of an instantaneous state in the distant future may well be impossible....In view of the inevitable inaccuracy and incompleteness of weather observations, precise very-long-range forecasting would seem to be nonexistent.


...
Wikipedia

...