In evolutionary ecology, an ecotype, sometimes called ecospecies, describes a genetically distinct geographic variety, population or race within a species, which is adapted to specific environmental conditions.
Typically, though ecotypes exhibit phenotypic differences (such as in morphology or physiology) stemming from environmental heterogeneity, they are capable of interbreeding with other geographically adjacent ecotypes without loss of fertility or vigor.
An ecotype is a variant in which the phenotypic differences are too few or too subtle to warrant being classified as a subspecies. These can occur in the same geographic region where distinct habitats such as meadow, forest, swamp, and sand dunes provide ecological niches. Where similar ecological conditions occur in widely separated places it is possible for a similar ecotype to occur. This is different to a subspecies, which may exist across a number of different habitats. In animals, ecotypes can be regarded as micro-subspecies that owe their differing characteristics to the effects of a very local environment. Therefore, ecotypes have no taxonomic rank.
Ecotypes are closely related to morphs. In the context of evolutionary biology, genetic polymorphism is the occurrence in equilibrium of two or more distinctly different phenotypes within a population of a species, in other words, the occurrence of more than one form or morph. The frequency of these discontinuous forms (even that of the rarest) is too high to be explained by mutation. In order to be classified as such, morphs must occupy the same habitat at the same time and belong to a panmictic population (whose all members can potentially interbreed). Polymorphism is actively and steadily maintained in populations of species by natural selection (most famously sexual dimorphism in humans) in contrast to transient polymorphisms where conditions in a habitat change in such a way that a "form" is being replaced completely by another.