*** Welcome to piglix ***

Earth's radiation balance


Earth's energy budget accounts for the energy Earth receives from the Sun. Much of this energy is lost when the earth re-radiates it back into outer space, and the rest of the energy is distributed throughout the five components of Earth's climate system. This system is made up of earth's water, ice, atmosphere, rocky crust, and all living things.

Quantifying changes in these amounts is required to accurately model the Earth's climate.

Received radiation is unevenly distributed over the planet, because the Sun heats equatorial regions more than polar regions. Energy is absorbed by the atmosphere, hydrosphere, and lithosphere, and, in a process informally described as Earth's heat engine, the solar heating is redistributed through evaporation of surface water, convection, rainfall, winds, and ocean circulation. When the incoming solar energy is balanced by an equal flow of heat to space, the Earth is said to be in radiative equilibrium and under that condition, global temperatures will be stable.

Disturbances of Earth's radiative equilibrium, such as an increase of greenhouse gases, will change global temperatures in response. However, Earth's energy balance and heat fluxes depend on many factors, such as atmospheric composition (mainly aerosols and greenhouse gases), the albedo (reflectivity) of surface properties, cloud cover and vegetation and land use patterns. Changes in surface temperature due to Earth's energy budget do not occur instantaneously, due to the inertia of the oceans and the cryosphere. The net heat flux is buffered primarily by becoming part of the ocean's heat content, until a new equilibrium state is established between radiative forcings and the climate response.


...
Wikipedia

...