Scientific notation (also referred to as standard form or standard index form) is a way of expressing numbers that are too big or too small to be conveniently written in decimal form. It is commonly used by scientists, mathematicians and engineers, in part because it can simplify certain arithmetic operations. On scientific calculators it is known as "SCI" display mode.
In scientific notation all numbers are written in the form
(m times ten raised to the power of n), where the exponent n is an integer, and the coefficient m is any real number, called the significand or mantissa. However, the term "mantissa" may cause confusion because it is the name of the fractional part of the common logarithm. If the number is negative then a minus sign precedes m (as in ordinary decimal notation). In normalized notation, the exponent is chosen so that the absolute value of the coefficient is at least one but less than ten.
Decimal floating point is a computer arithmetic system closely related to scientific notation.
Any given integer can be written in the form m×10 n in many ways: for example, 350 can be written as ×102 or 3.5×101 or 35×100. 350
In normalized scientific notation (called "standard form" in the UK), the exponent n is chosen so that the absolute value of m remains at least one but less than ten (1 ≤ |m| < 10). Thus 350 is written as ×102. This form allows easy comparison of numbers, as the exponent n gives the number's 3.5order of magnitude. In normalized notation, the exponent n is negative for a number with absolute value between 0 and 1 (e.g. 0.5 is written as ×10−1). The 10 and exponent are often omitted when the exponent is 0. 5