EXOSAT
|
|
Mission type | Astronomy |
---|---|
Operator | ESA |
COSPAR ID | 1983-051A |
SATCAT no. | 14095 |
Website | www |
Mission duration | 3 years |
Spacecraft properties | |
Manufacturer | MBB |
Launch mass | 510.0 kg (1,124.4 lb) |
Power | 165.0 watts |
Start of mission | |
Launch date | May 26, 1983, 15:18:00 | UTC
Rocket | Delta 3914 D169 |
Launch site | Vandenberg SLC-2W |
End of mission | |
Decay date | May 5, 1986 |
Orbital parameters | |
Reference system | Geocentric |
Regime | Low Earth |
Eccentricity | 0.93428 |
Perigee | 347 km (216 mi) |
Apogee | 191.709 km (119.122 mi) |
Inclination | 72.5 degrees |
Period | 5.435.4 minutes |
Legacy ESA insignia for the EXOSAT mission |
The European X-ray Observatory Satellite (EXOSAT), originally named HELOS, was an X-ray telescope operational from May 1983 until April 1986 and in that time made 1780 observations in the X-ray band of most classes of astronomical object including active galactic nuclei, stellar coronae, cataclysmic variables, white dwarfs, X-ray binaries, clusters of galaxies, and supernova remnants.
This European Space Agency (ESA) satellite for direct-pointing and lunar-occultation observation of X-ray sources beyond the solar system was launched into a highly eccentric orbit (apogee 200,000 km, perigee 500 km) almost perpendicular to that of the moon on May 26, 1983. The instrumentation includes two low-energy imaging telescopes (LEIT) with Wolter I X-ray optics (for the 0.04-2 keV energy range), a medium-energy experiment using Ar/CO2 and Xe/CO2 detectors (for 1.5-50 keV), a Xe/He gas scintillation spectrometer (GSPC) (covering 2-80 keV), and a reprogrammable onboard data-processing computer. Exosat was capable of observing an object (in the direct-pointing mode) for up to 80 hours and of locating sources to within at least 10 arcsec with the LEIT and about 2 arcsec with GSPC.
During the period from 1967 to 1969, the European Space Research Organisation (ESRO) studied two separate missions: a European X-ray observatory satellite, as a combined X- and gamma-ray observatory (Cos-A), and a gamma-ray observatory (Cos-B). Cos-A was dropped after the initial study, and Cos-B was proceeded with.
Later in 1969 a separate satellite (the Highly Eccentric Lunar Occultation Satellite - Helos) was proposed. The Helos mission was to determine accurately the location of bright X-ray sources using the lunar occultation technique. In 1973 the observatory part of the mission was added, and mission approval from the European Space Agency Council was given for Helos, now renamed Exosat.