Ets-domain | |||||||||
---|---|---|---|---|---|---|---|---|---|
Structure of Ets-1 DNA binding autoinhibition.
|
|||||||||
Identifiers | |||||||||
Symbol | Ets | ||||||||
Pfam | PF00178 | ||||||||
Pfam clan | CL0123 | ||||||||
InterPro | IPR000418 | ||||||||
SMART | SM00413 | ||||||||
PROSITE | PDOC00374 | ||||||||
SCOP | 1r36 | ||||||||
SUPERFAMILY | 1r36 | ||||||||
|
Available protein structures: | |
---|---|
Pfam | structures |
PDB | RCSB PDB; PDBe; PDBj |
PDBsum | structure summary |
In the field of molecular biology, the ETS (E26 transformation-specific or E-twenty-six) family is one of the largest families of transcription factors and is unique to animals. There are 29 genes in humans, 28 in the mouse, 10 in Caenorhabditis elegans and 9 in Drosophila. The founding member of this family was identified as a gene transduced by the leukemia virus, E26. The members of the family have been implicated in the development of different tissues as well as cancer progression.
The ETS family is divided into 12 subfamilies, which are listed below:
All ETS family members are identified through a highly conserved DNA binding domain, the ETS domain, which is a winged helix-turn-helix structure that binds to DNA sites with a central GGA(A/T) DNA sequence. As well as DNA-binding functions, evidence suggests that the ETS domain is also involved in protein-protein interactions. There is limited similarity outside the ETS DNA binding domain.
Other domains are also present and vary from ETS member to ETS member, including the Pointed domain, a subclass of the SAM domain family.
The ETS family is present throughout the body and is involved in a wide variety of functions including the regulation of cellular differentiation, cell cycle control, cell migration, cell proliferation, apoptosis (programmed cell death) and angiogenesis.
Multiple Ets factors have been found to be associated with cancer, such as through gene fusion. For example, the ERG ETS transcription factor is fused to the EWS gene, resulting in a condition called Ewing's sarcoma. The fusion of TEL to the JAK2 protein results in early pre-B acute lymphoid leukaemia. ERG and ETV1 are known gene fusions found in prostate cancer.