Drug tolerance is a pharmacological concept describing subjects' reduced reaction to a drug following its repeated use. Increasing its dosage may re-amplify the drug's effects, however this may accelerate tolerance, further reducing the drug's effects. Drug tolerance is a contributing factor of drug addiction.
The following are characteristics of drug tolerance: it is reversible, the rate depends on the particular drug, dosage and frequency of use, differential development occurs for different effects of the same drug.
Tachyphylaxis is a sudden onset drug tolerance which is not dose dependent.
Pharmacodynamic tolerance occurs when the cellular response to a substance is reduced with repeated use. A common cause of pharmacodynamic tolerance is high concentrations of a substance constantly binding with the receptor, desensitizing it through constant interaction. Other possibilities include a reduction in receptor density (usually associated with receptor agonists), or other mechanisms leading to changes in action potential firing rate. Pharmacodynamic tolerance to a receptor antagonist involves the reverse, i.e., increased receptor firing rate, an increase in receptor density, or other mechanisms.
While most occurrences of pharmacodynamic tolerance occur after sustained exposure to a drug, instances of acute or instant tolerance can occur.
Pharmacokinetics refers to the absorption, distribution, metabolism, and excretion of drugs. All psychoactive drugs are first absorbed into the bloodstream, carried in the blood to various parts of the body including the site of action (distribution), broken down in some fashion (metabolism), and ultimately removed from the body (excretion). All of these factors are very important determinants of crucial pharmacological properties of a drug, including its potency, side effects, and duration of action.
Pharmacokinetic tolerance (dispositional tolerance) occurs because of a decreased quantity of the substance reaching the site it affects. This may be caused by an increase in induction of the enzymes required for degradation of the drug e.g. CYP450 enzymes. This is most commonly seen with substances such as ethanol.
This type of tolerance is most evident with oral ingestion, because other routes of drug administration bypass first-pass metabolism. Enzyme induction is partly responsible for the phenomenon of tolerance, in which repeated use of a drug leads to a reduction of the drug’s effect. However, it is only one of several mechanisms of tolerance