*** Welcome to piglix ***

Drug carrier


A drug carrier is any substrate used in the process of drug delivery which serves to improve the selectivity, effectiveness, and/or safety of drug administration. Drug carriers are primarily used to control the release of a drug into systemic circulation. This can be accomplished either by slow release of the drug over a long period of time (typically diffusion) or by triggered release at the drug's target by some stimulus, such as changes in pH, application of heat, and activation by light. Drug carriers are also used to improve the pharmacokinetic properties, specifically the bioavailability, of many drugs with poor water solubility and/or membrane permeability.

A wide variety of drug carrier systems have been developed and studied, each of which has unique advantages and disadvantages. Some of the more popular types of drug carriers include liposomes, polymeric micelles, microspheres, and nanoparticles. Different methods of attaching the drug to the carrier have been implemented, including adsorption, integration into the bulk structure, encapsulation, and covalent bonding. Different types of drug carrier utilize different methods of attachment, and some carriers can even implement a variety of attachment methods.

Liposomes are structures which consist of at least one lipid bilayer surrounding an aqueous core. This hydrophobic/hydrophilic composition is particularly useful for drug delivery as these carriers can accommodate a number of drugs of varying lipophilicity. Disadvantages associated with using liposomes as drug carriers involve poor control over drug release. Drugs which have high membrane-permeability can readily 'leak' from the carrier, while optimization of in vivo stability can cause drug release by diffusion to be a slow and inefficient process. Much of the current research involving liposomes is focused on improving the delivery of anticancer drugs such as doxorubicin and paclitaxel.


...
Wikipedia

...