In computing, a device driver is a computer program that operates or controls a particular type of device that is attached to a computer. A driver provides a software interface to hardware devices, enabling operating systems and other computer programs to access hardware functions without needing to know precise details of the hardware being used.
A driver communicates with the device through the computer bus or communications subsystem to which the hardware connects. When a calling program invokes a routine in the driver, the driver issues commands to the device. Once the device sends data back to the driver, the driver may invoke routines in the original calling program. Drivers are hardware dependent and operating-system-specific. They usually provide the interrupt handling required for any necessary asynchronous time-dependent hardware interface.
The main purpose of device drivers is to provide abstraction by acting as a translator between a hardware device and the applications or operating systems that use it. Programmers can write the higher-level application code independently of whatever specific hardware the end-user is using.
For example, a high-level application for interacting with a serial port may simply have two functions for "send data" and "receive data". At a lower level, a device driver implementing these functions would communicate to the particular serial port controller installed on a user's computer. The commands needed to control a 16550 UART are much different from the commands needed to control an FTDI serial port converter, but each hardware-specific device driver abstracts these details into the same (or similar) software interface.
Writing a device driver requires an in-depth understanding of how the hardware and the software works for a given platform function. Because drivers require low-level access to hardware functions in order to operate, drivers typically operate in a highly privileged environment and can cause system operational issues if something goes wrong. In contrast, most user-level software on modern operating systems can be stopped without greatly affecting the rest of the system. Even drivers executing in user mode can crash a system if the device is erroneously programmed. These factors make it more difficult and dangerous to diagnose problems.