Douglas H. Turner | |
---|---|
Group picture of Turner group members and alumni, with Doug at center, at Doug's 60th birthday celebration.
|
|
Background information | |
Website | http://rna.chem.rochester.edu/ |
Douglas "Doug" H. Turner is an American chemist and Professor of Chemistry at the University of Rochester.
Doug Turner grew up in Brooklyn, NY where he claims, "As a stick ball player I developed the best curve ball and screwball on my block" .
Doug attended Harvard College, where he graduated cum laude in Chemistry and was commissioned as a Second Lieutenant in the U.S. Army. He did his graduate work in the Chemistry Departments of Columbia University and Brookhaven National Labs, where he worked with George Flynn and Norman Sutin to develop the Raman laser temperature jump method for measuring kinetics on a nanosecond time scale. During this period, he also spent three months in Anniston, Alabama taking the Officer's Basic Course of the Army's Chemical Corp. Deciding that he liked science more than war, he turned down the opportunity to continue as an active duty officer and went to the University of California to postdoc with Ignacio Tinoco, Jr.. There, he invented fluorescence detected circular dichroism for measuring the optical activity of the fluorescent component of a solution.
In 1975, Doug joined the faculty of the Chemistry Department at the University of Rochester, where he is still a Professor. Doug was also lucky to be part of the academic family of Tom Cech (Nobel Prize in Chemistry, 1989) during 2 sabbatical years at the University of Colorado at Boulder. Doug has been unusually lucky with his own academic family of 8 postdocs, 47 students who have graduated with Ph.D.'s, and his other collaborators. Together, they have discovered many of the fundamental principles that determine RNA structure. These principles, dubbed "Turner Rules", are used in many RNA structure prediction algorithm. This has helped advance methods for predicting RNA structure from sequence, as well as RNA-RNA interactions: e.g. miRNA or siRNA target binding. Methods using the Turner Rules are widely used by biochemists and biologists. In his own lab, these methods were used to discover potentially medically important RNA structures in influenza virus including an RNA pseudoknot that may play a role in regulating splicing at the Influenza A Segment 7 Splice Site.