*** Welcome to piglix ***

Dominance (game theory)


In game theory, strategic dominance (commonly called simply dominance) occurs when one strategy is better than another strategy for one player, no matter how that player's opponents may play. Many simple games can be solved using dominance. The opposite, intransitivity, occurs in games where one strategy may be better or worse than another strategy for one player, depending on how the player's opponents may play.

When a player tries to choose the "best" strategy among a multitude of options, that player may compare two strategies A and B to see which one is better. The result of the comparison is one of:

This notion can be generalized beyond the comparison of two strategies.

Strategy: A complete contingent plan for a player in the game. A complete contingent plan is a full specification of a player's behavior, describing each action a player would take at every possible decision point. Because information sets represent points in a game where a player must make a decision, a player's strategy describes what that player will do at each information set.

Rationality: The assumption that each player acts to in a way that is designed to maximize his or her expected payoff. A straightforward example is that of monetary gain, but for the purpose of a game theory analysis, this payoff can take many forms. Be it a cash reward, minimization of exertion or discomfort, or amassing overall “utility” - the assumption of rationality states that players will always act in the way that maximizes their personal payoff.

Common Knowledge: The assumption that each player has knowledge of the game, knows the rules and payoffs associated with each course of action, and realizes that every other player has this same level of understanding. This is the premise that allows a player to make a value judgment on the actions of another player, backed by the assumption of rationality, into consideration when selecting an action.

If a strictly dominant strategy exists for one player in a game, that player will play that strategy in each of the game's Nash equilibria. If both players have a strictly dominant strategy, the game has only one unique Nash equilibrium. However, that Nash equilibrium is not necessarily Pareto optimal, meaning that there may be non-equilibrium outcomes of the game that would be better for both players. The classic game used to illustrate this is the Prisoner's Dilemma.


...
Wikipedia

...