In mathematics, the Dixmier trace, introduced by Jacques Dixmier (1966), is a non-normal trace on a space of linear operators on a Hilbert space larger than the space of trace class operators. Dixmier traces are examples of singular traces.
Some applications of Dixmier traces to noncommutative geometry are described in (Connes 1994).
If H is a Hilbert space, then L1,∞(H) is the space of compact linear operators T on H such that the norm
is finite, where the numbers μi(T) are the eigenvalues of |T| arranged in decreasing order. Let
The Dixmier trace Trω(T) of T is defined for positive operators T of L1,∞(H) to be
where limω is a scale-invariant positive "extension" of the usual limit, to all bounded sequences. In other words, it has the following properties:
There are many such extensions (such as a Banach limit of α1, α2, α4, α8,...) so there are many different Dixmier traces. As the Dixmier trace is linear, it extends by linearity to all operators of L1,∞(H). If the Dixmier trace of an operator is independent of the choice of limω then the operator is called measurable.
A trace φ is called normal if φ(sup xα) = sup φ( xα) for every bounded increasing directed family of positive operators. Any normal trace on is equal to the usual trace, so the Dixmier trace is an example of a non-normal trace.