*** Welcome to piglix ***

Divergence-free


In vector calculus a solenoidal vector field (also known as an incompressible vector field, a divergence-free vector field, or a transverse vector field) is a vector field v with divergence zero at all points in the field:

The fundamental theorem of vector calculus states that any vector field can be expressed as the sum of an irrotational and a solenoidal field. The condition of zero divergence is satisfied whenever a vector field v has only a vector potential component, because the definition of the vector potential A as:

automatically results in the identity (as can be shown, for example, using Cartesian coordinates):

The converse also holds: for any solenoidal v there exists a vector potential A such that (Strictly speaking, this holds only subject to certain technical conditions on v, see Helmholtz decomposition.)

The divergence theorem gives the equivalent integral definition of a solenoidal field; namely that for any closed surface, the net total flux through the surface must be zero:


...
Wikipedia

...