A distributed feedback laser (DFB) is a type of laser diode, quantum cascade laser or optical fiber laser where the active region of the device is periodically structured as a diffraction grating. The structure builds a one-dimensional interference grating (Bragg scattering) and the grating provides optical feedback for the laser.
DFB laser diodes do not use two discrete mirrors to form the optical cavity (as they are used in conventional laser designs). The grating acts as the wavelength selective element for at least one of the mirrors and provides the feedback, reflecting light back into the cavity to form the resonator. The grating is constructed so as to reflect only a narrow band of wavelengths, and thus produce a single longitudinal lasing mode. This is in contrast to a Fabry-Perot Laser, where the facets of the chip form the two mirrors and provide the feedback. In that case, the mirrors are broadband and either the laser functions at multiple longitudinal modes simultaneously or easily jumps between longitudinal modes. Altering the temperature of the device causes the pitch of the grating to change due to the dependence of refractive index on temperature. This dependence is caused by a change in the semiconductor laser's bandgap with temperature and thermal expansion. A change in the refractive index alters the wavelength selection of the grating structure and thus the wavelength of the laser output, producing a wavelength tunable laser or TDL (Tunable Diode Laser). The tuning range is usually of the order of 6 nm for a ~50 K (90 °F) change in temperature, while the linewidth of a DFB laser is a few megahertz. Altering of the current powering the laser will also tune the device, as a current change causes a temperature change inside the device. Integrated DFB lasers are often used in optical communication applications, such as DWDM where a tunable laser signal is desired as well as in sensing where extreme narrow line width is required, or in gas sensing applications, where the signal of the absorbing gas is detected while wavelength tuning the DFB laser.