*** Welcome to piglix ***

Directed complete partial order


In mathematics, the phrase complete partial order is variously used to refer to at least three similar, but distinct, classes of partially ordered sets, characterized by particular completeness properties. Complete partial orders play a central role in theoretical computer science, in denotational semantics and domain theory.

A complete partial order abbreviated cpo can, depending on context, refer to any of the following concepts.

Note that complete partial order is never used to mean a poset in which all subsets have suprema; the terminology complete lattice is used for this concept.

Requiring the existence of directed suprema can be motivated by viewing directed sets as generalized approximation sequences and suprema as limits of the respective (approximative) computations. This intuition, in the context of denotational semantics, was the motivation behind the development of domain theory.

The dual notion of a directed complete poset is called a filtered complete partial order. However, this concept occurs far less frequently in practice, since one usually can work on the dual order explicitly.

An ordered set P is a pointed dcpo if and only if every chain has a supremum in P, i.e., P is chain-complete. Alternatively, an ordered set P is a pointed dcpo if and only if every order-preserving self-map of P has a least fixpoint. Every set S can be turned into a pointed dcpo by adding a least element ⊥ and introducing a flat order with ⊥ ≤ s and s ≤ s for every s ∈ S and no other order relations.

A function f between two dcpos P and Q is called (Scott) continuous if it maps directed sets to directed sets while preserving their suprema:


...
Wikipedia

...