*** Welcome to piglix ***

Dipankar Home

Dipankar Home
Born 11 November 1955
Residence Kolkata, India
Citizenship India Flag of India.svg
Fields Physics
Institutions Bose Institute
Notable awards
  • Darshan Vigyan Samman
  • B. M. Birla Science Prize
  • INSA Medal for Young Scientist

Dipankar Home (born 11 November 1955) is an Indian theoretical physicist at Bose Institute, Kolkata. He works on the fundamental aspects of quantum mechanics, including quantum entanglement and Quantum communication. He is co-author with Partha Ghose of the popular book Riddles in your Teacup - Fun with Everyday Scientific Puzzles.

Dipankar's research interests are in the following areas:

Dipankar Home is among the earliest Indian researchers initiating studies on Foundations of Quantum Mechanics that have gradually become linked with experiments, giving rise to the currently vibrant area of Quantum Information (QI). His manifold contributions include two distinctive Research-level Books: “Conceptual Foundations of Quantum Physics – An Overview from Modern Perspectives” (Plenum) and “Einstein’s Struggles with Quantum Theory: A Reappraisal” (Springer) with Forewords by Anthony Leggett and Roger Penrose respectively (Appendix A), while some of the significant works with his collaborators are:

(a) An ingenious idea was formulated by invoking Quantum Indistinguishability leading to an arbitrarily efficient resource for producing entanglement, applicable for spin-like variables of any two identical bosons/fermions. Entanglement being at the core of QI, this work has stimulated applications of Quantum Statistics in QI processing, apart from being used in studies on free electron Quantum Computation.

(b) A hitherto unexplored use of intraparticle path-spin entanglement was conceived for empirically verifying Quantum Contextuality, subsequently tested by the Vienna group, followed recently by suggesting its information-theoretic applications.

(c) A widely cited analysis of the Quantum Zeno effect (Annals of Physics 258, 237 (1997)), preceded by the formulation of a unified framework for such effects (Physics Letters A 173, 327 (1993)).

(d) Proposed a novel experiment to show simultaneous wave and particle – like behaviour in the same setup using optical tunneling of single photon states (Physics Letters A 153, 403 (1991)), subsequently tested (Physics Letters A 168, 1 (1992)) at Hamamatsu Photonics laboratory, Japan.

(e) Conceived an innovative biomolecular example to probe the Quantum Measurement Problem (Physical Review Letters 76, 2836 (1996)), preceded by a demonstration of the quantum mechanical violation of classical realism for multiparticle systems even under strong macroscopic limiting conditions (Physical Review A 52, 4959 (1995)).


...
Wikipedia

...