*** Welcome to piglix ***

Dihydromorphine

Dihydromorphine
Skeletal formula of dihydromorphine
Ball-and-stick model of the dihydromorphine molecule
Clinical data
Routes of
administration
Oral, Intravenous, Intranasally, Sublingually
ATC code
  • none
Legal status
Legal status
Identifiers
Synonyms Dihydromorphine, Paramorphan
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEMBL
ECHA InfoCard 100.007.365
Chemical and physical data
Formula C17H21NO3
Molar mass 287.354 g/mol
3D model (Jmol)
 NYesY (what is this?)  

Dihydromorphine (Paramorfan, Paramorphan) is a semi-synthetic opioid structurally related to and derived from morphine. The 7,8-double bond in morphine is reduced to a single bond to get dihydromorphine. Dihydromorphine is a moderately strong analgesic and is used clinically in the treatment of pain and also is an active metabolite of the analgesic opioid drug dihydrocodeine. Dihydromorphine occurs in trace quantities in assays of opium on occasion, as does dihydrocodeine, dihydrothebaine, tetrahydrothebaine, etc. The process for manufacturing dihydromorphine from morphine for pharmaceutical use was developed in Germany in the late 19th Century, with the synthesis being published in 1900 and the drug introduced clinically as Paramorfan shortly thereafter. A high-yield synthesis from tetrahydrothebaine was later developed.

Dihydromorphine is an opioid that is used for the management of moderate to severe pain such as cancer, although it's less effective in treating things such as neuropathic pain and is generally considered inappropriate and ineffective for psychological pain.

Dihydromorphine, often labelled with the isotope tritium in the form of [3H]-dihydromorphine, is used in scientific research to study binding of the opioid receptors in the nervous system.

Dihydromorphine is slightly stronger than morphine as an analgesic with a similar side effect profile. The relative potency of dihydromorphine is about 1.2 times that of morphine. In comparison, the relative potency of dihydrocodeine is 1.15 times that of codeine.

Dihydromorphine acts as an agonist at the μ-opioid (mu), δ-opioid (delta) and κ-opioid (kappa) receptors. Agonist of the μ-opioid and δ-opioid receptors is largely responsible for the clinical effects of opioids like dihydromorphine with the μ agonism providing more analgesia than the δ.

Dihydromorphine's onset of action is more rapid than morphine and it also tends to have a longer duration of action, generally 4–7 hours.


...
Wikipedia

...