*** Welcome to piglix ***

Digital holography


Digital holography refers to the acquisition and processing of holograms with a digital sensor array , typically a CCD camera or a similar device. Image rendering, or reconstruction of object data is performed numerically from digitized interferograms. Digital holography offers a means of measuring optical phase data and typically delivers three-dimensional surface or optical thickness images. Several recording and processing schemes have been developed to assess optical wave characteristics such as amplitude, phase, and polarization state, which make digital holography a very powerful method for metrology applications .

In the off-axis configuration, a small angle between the reference and the object beams is used to prevent overlapping of the cross-beating contributions between the object and reference optical fields with the self-beating contributions of these fields. These discoveries were made by Emmett Leith and Juris Upatnieks for analog holography, and subsequently adapted to digital holography. In this configuration, only a single recorded digital interferogram is required for image reconstruction. Yet, this configuration can be used in conjunction with temporal modulation methods, such as phase-shifting and frequency-shifting.

The phase-shifting (or phase-stepped) digital holography process entails capturing multiple interferograms that each indicate the optical phase relationships between light returned from all points on the illuminated object and a controlled reference beam of light. The optical phase of the reference beam is shifted from one sampled interferogram to the next. From a linear combination of these interferograms, complex-valued holograms are formed. These holograms contain amplitude and phase information of the optical radiation diffracted by the object, in the sensor plane.

Through the use of electro-optic modulators (Pockel cells) or acousto-optic modulators (Bragg cells), the reference laser beam can be frequency-shifted by a tunable quantity. This enables optical heterodyne detection, a frequency-conversion process aimed at shifting a given radiofrequency optical signal component in the sensor's temporal bandwidth. Frequency-shifted holograms can be used for narrowband laser Doppler imaging.

Addressing simultaneously distinct domains of the temporal and spatial bandwidth of holograms was performed with success for angular, wavelength, space-division, polarization, and sideband multiplexing schemes. Digital holograms can be numerically multiplexed and demultiplexed for efficient storage and transmission. Amplitude and phase can be correctly recovered.


...
Wikipedia

...