*** Welcome to piglix ***

Digital circuits


Digital electronics or digital (electronic) circuits are electronics that handle digital signals (discrete bands of analog levels) rather than by continuous ranges as used in analog electronics. All levels within a band of values represent the same information state. Because of this discretization, relatively small changes to the analog signal levels due to manufacturing tolerance, signal attenuation or noise do not leave the discrete envelope, and as a result are ignored by signal state sensing circuitry.

In most cases, the number of these states is two, and they are represented by two voltage bands: one near a reference value (typically termed as "ground" or zero volts), and the other a value near the supply voltage. These correspond to the false and true values of the Boolean domain respectively. Digital techniques are useful because it is easier to get an electronic device to switch into one of a number of known states than to accurately reproduce a continuous range of values.

Digital electronic circuits are usually made from large assemblies of logic gates, simple electronic representations of Boolean logic functions.

The binary number system was refined by Gottfried Wilhelm Leibniz (published in 1705), influenced by the ancient I Ching's binary system. Leibniz established that, by using the binary system, the principles of arithmetic and logic could be combined. Digital logic as we know it was the brain-child of George Boole, in the mid 19th century. Boole died young, but his ideas lived on. In an 1886 letter, Charles Sanders Peirce described how logical operations could be carried out by electrical switching circuits. Eventually, vacuum tubes replaced relays for logic operations. Lee De Forest's modification, in 1907, of the Fleming valve can be used as an AND logic gate. Ludwig Wittgenstein introduced a version of the 16-row truth table as proposition 5.101 of Tractatus Logico-Philosophicus (1921). Walther Bothe, inventor of the coincidence circuit, got part of the 1954 Nobel Prize in physics, for the first modern electronic AND gate in 1924.


...
Wikipedia

...