*** Welcome to piglix ***

Differential Global Positioning System


Differential Global Positioning System (DGPS) is an enhancement to Global Positioning System that provides improved location accuracy, from the 15-meter nominal GPS accuracy to about 10 cm in case of the best implementations.

DGPS uses a network of fixed, ground-based reference stations to broadcast the difference between the positions indicated by the GPS satellite systems and the known fixed positions. These stations broadcast the difference between the measured satellite pseudoranges and actual (internally computed) pseudoranges, and receiver stations may correct their pseudoranges by the same amount. The digital correction signal is typically broadcast locally over ground-based transmitters of shorter range.

The term refers to a general technique of augmentation. The United States Coast Guard (USCG) and Canadian Coast Guard (CCG) each run such systems in the U.S. and Canada on the longwave radio frequencies between 285 kHz and 325 kHz near major waterways and harbors. The USCG's DGPS system has been named NDGPS (Nationwide DGPS) and is now jointly administered by the Coast Guard and the U.S. Department of Transportation’s Federal Highway Administration. It consists of broadcast sites located throughout the inland and coastal portions of the United States including Alaska, Hawaii and Puerto Rico.

A similar system that transmits corrections from orbiting satellites instead of ground-based transmitters is called a Wide-Area DGPS (WADGPS) or Satellite Based Augmentation System.

When GPS was first being put into service, the US military was concerned about the possibility of enemy forces using the globally available GPS signals to guide their own weapon systems. Originally, the government thought the "coarse acquisition" (C/A) signal would only give about 100 meter accuracy, but with improved receiver designs, the actual accuracy was 20 to 30 meters. Starting in March 1990, to avoid providing such unexpected accuracy, the C/A signal transmitted on the L1 frequency (1575.42 MHz) was deliberately degraded by offsetting its clock signal by a random amount, equivalent to about 100 meters of distance. This technique, known as "Selective Availability", or SA for short, seriously degraded the usefulness of the GPS signal for non-military users. More accurate guidance was possible for users of dual frequency GPS receivers that also received the L2 frequency (1227.6 MHz), but the L2 transmission, intended for military use, was encrypted and was only available to authorised users with the encryption keys.


...
Wikipedia

...