In mathematics, an n-dimensional differential structure (or differentiable structure) on a set M makes M into an n-dimensional differential manifold, which is a topological manifold with some additional structure that allows for differential calculus on the manifold. If M is already a topological manifold, it is required that the new topology be identical to the existing one.
For a natural number n and some k which may be a non-negative integer or infinity, an n-dimensional Ck differential structure is defined using a Ck-atlas, which is a set of bijections called charts between a collection of subsets of M (whose union is the whole of M), and a set of open subsets of :
which are Ck-compatible (in the sense defined below):
Each such map provides a way in which certain subsets of the manifold may be viewed as being like open subsets of but the usefulness of this notion depends on to what extent these notions agree when the domains of two such maps overlap.