In combinatorics, a difference set is a subset of size of a group of order such that every nonidentity element of can be expressed as a product of elements of in exactly ways. A difference set is said to be cyclic, abelian, non-abelian, etc., if the group has the corresponding property. A difference set with is sometimes called planar or simple. If is an abelian group written in additive notation, the defining condition is that every nonzero element of can be written as a difference of elements of in exactly ways. The term "difference set" arises in this way.