In mathematics, and particularly in axiomatic set theory, the diamond principle ◊ is a combinatorial principle introduced by Ronald Jensen in Jensen (1972) that holds in the constructible universe (L) and that implies the continuum hypothesis. Jensen extracted the diamond principle from his proof that the Axiom of constructibility (V=L) implies the existence of a Suslin tree.
The diamond principle ◊ says that there exists a ◊-sequence, in other words sets Aα⊆α for α<ω1 such that for any subset A of ω1 the set of α with A∩α = Aα is stationary in ω1.
There are several equivalent forms of the diamond principle. One states that there is a countable collection Aα of subsets of α for each countable ordinal α such that for any subset A of ω1 there is a stationary subset C of ω1 such that for all α in C we have A∩α ∈ Aα and C∩α ∈ Aα. Another equivalent form states that there exist sets Aα⊆α for α<ω1 such that for any subset A of ω1 there is at least one infinite α with A∩α = Aα.
More generally, for a given cardinal number and a stationary set , the statement ◊S (sometimes written ◊(S) or ◊κ(S)) is the statement that there is a sequence such that