In quantum chemistry, the potential energy surfaces are obtained within the adiabatic or Born–Oppenheimer approximation. This corresponds to a representation of the molecular wave function where the variables corresponding to the molecular geometry and the electronic degrees of freedom are separated. The non separable terms are due to the nuclear kinetic energy terms in the molecular Hamiltonian and are said to couple the potential energy surfaces. In the neighbourhood of an avoided crossing or conical intersection, these terms cannot be neglected. One therefore usually performs one unitary transformation from the adiabatic representation to the so-called diabatic representation in which the nuclear kinetic energy operator is diagonal. In this representation, the coupling is due to the electronic energy and is a scalar quantity which is significantly easier to estimate numerically.
In the diabatic representation, the potential energy surfaces are smoother, so that low order Taylor series expansions of the surface capture much of the complexity of the original system. However strictly diabatic states do not exist in the general case. Hence, diabatic potentials generated from transforming multiple electronic energy surfaces together are generally not exact. These can be called pseudo-diabatic potentials, but generally the term is not used unless it is necessary to highlight this subtlety. Hence, pseudo-diabatic potentials are synonymous with diabatic potentials.