Names | |
---|---|
IUPAC name
3-Hydroxy-2-oxopropyl phosphate
|
|
Other names
Dihydroxyacetone phosphate
DHAP |
|
Identifiers | |
57-04-5 | |
3D model (Jmol) | Interactive image |
ChEBI | CHEBI:57642 |
ChemSpider | 648 |
ECHA InfoCard | 100.000.280 |
PubChem | 668 |
|
|
|
|
Properties | |
C3H7O6P | |
Molar mass | 170.06 g/mol |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
what is ?) | (|
Infobox references | |
Dihydroxyacetone phosphate (DHAP, also glycerone phosphate in older texts) is a biochemical compound involved in many metabolic pathways, including the Calvin cycle in plants and glycolysis.
Dihydroxyacetone phosphate lies in the glycolysis metabolic pathway, and is one of the two products of breakdown of fructose 1,6-bisphosphate, along with glyceraldehyde 3-phosphate. It is rapidly and reversibly isomerised to glyceraldehyde 3-phosphate.
Compound C05378 at KEGG Pathway Database. Enzyme 4.1.2.13 at KEGG Pathway Database. Compound C00111 at KEGG Pathway Database. Compound C00118 at KEGG Pathway Database.
The numbering of the carbon atoms indicates the fate of the carbons according to their position in fructose 6-phosphate.
Compound C00111 at KEGG Pathway Database.Enzyme 5.3.1.1 at KEGG Pathway Database.Compound C00118 at KEGG Pathway Database.
Click on genes, proteins and metabolites below to link to respective articles.
In the Calvin cycle, DHAP is one of the products of the sixfold reduction of 1,3-bisphosphoglycerate by NADPH. It is also used in the synthesis of sedoheptulose 1,7-bisphosphate and fructose 1,6-bisphosphate, both of which are used to reform ribulose 5-phosphate, the 'key' carbohydrate of the Calvin cycle.