In astrodynamics and aerospace, a delta-v budget is an estimate of the total delta-v required for a space mission. It is calculated as the sum of the delta-v required for the propulsive maneuvers during the mission, and as input to the Tsiolkovsky rocket equation, determines how much propellant is required for a vehicle of given mass and propulsion system.
Delta-v is a scalar quantity dependent only on the desired trajectory and not on the mass of the space vehicle. For example, although more thrust, fuel, etc. is needed to transfer a larger communication satellite from low Earth orbit to geosynchronous orbit, the delta-v required is the same. Also delta-v is additive, as contrasted to rocket burn time, the latter having greater effect later in the mission when more fuel has been used up.
Tables of the delta-v required to move between different space venues are useful in the conceptual planning of space missions. In the absence of an atmosphere, the delta-v is typically the same for changes in orbit in either direction; in particular, gaining and losing speed cost an equal effort. An atmosphere can be used to slow a spacecraft by aerobraking.
A typical delta-v budget might enumerate various classes of maneuvers, delta-v per maneuver, and number of each maneuver required over the life of the mission, and simply sum the total delta-v, much like a typical financial budget. Because the delta-v needed to achieve the mission usually varies with the relative position of the gravitating bodies, launch windows are often calculated from porkchop plots that show delta-v plotted against the launch time.
The Tsiolkovsky rocket equation shows that the delta-v of a rocket (stage), is proportional to the logarithm of the fuelled-to-empty mass ratio of the vehicle, and to the specific impulse of the rocket engine. A key goal in designing space-mission trajectories is to minimize the required delta-v to reduce the size and expense of the rocket that would be needed to successfully deliver any particular payload to its destination.