The deductive-nomological model (DN model), also known as Hempel's model or the Hempel–Oppenheim model or the Popper–Hempel model or the Covering Law Model, is a formal view of scientifically answering questions asking, "Why...?". The DN model poses scientific explanation as a deductive structure—that is, one where truth of its premises entails truth of its conclusion—hinged on accurate prediction or postdiction of the phenomenon to be explained.
Because of problems concerning humans' ability to define, discover, and know causality, it was omitted in initial formulations of the DN model. Causality was thought to be incidentally approximated by realistic selection of premises that derive the phenomenon of interest from observed starting conditions plus general laws. Still, DN model formally permitted causally irrelevant factors. Also, derivability from observations and laws sometimes yielded absurd answers.
Upon the fall of logical empiricism's in the 1960s, the DN model was widely seen as a flawed or greatly incomplete model of scientific explanation. Nonetheless, it remained an idealized version of scientific explanation, and one that was rather accurate when applied to modern physics. In the early 1980s, revision to DN model emphasized maximal specificity for relevance of the conditions and axioms stated. Together with Hempel's inductive-statistical model, the DN model forms scientific explanation's covering law model, which is also termed, from critical angle, subsumption theory.
The term deductive distinguishes the DN model's intended determinism from the probabilism of inductive inferences. The term nomological is derived from the Greek word or nomos, meaning "law". The DN model holds to a view of scientific explanation whose conditions of adequacy (CA)—semiformal but stated classically—are derivability (CA1), lawlikeness (CA2), empirical content (CA3), and truth (CA4).