*** Welcome to piglix ***

Decrypt


In cryptography, encryption is the process of encoding messages or information in such a way that only authorized parties can access it. Encryption does not of itself prevent interference, but denies the intelligible content to a would-be interceptor. In an encryption scheme, the intended information or message, referred to as plaintext, is encrypted using an encryption algorithm, generating ciphertext that can only be read if decrypted. For technical reasons, an encryption scheme usually uses a pseudo-random encryption key generated by an algorithm. It is in principle possible to decrypt the message without possessing the key, but, for a well-designed encryption scheme, large computational resources and skill are required. An authorized recipient can easily decrypt the message with the key provided by the originator to recipients but not to unauthorized users.

In symmetric-key schemes, the encryption and decryption keys are the same. Communicating parties must have the same key before they can achieve secure communication.

In public-key encryption schemes, the encryption key is published for anyone to use and encrypt messages. However, only the receiving party has access to the decryption key that enables messages to be read. Public-key encryption was first described in a secret document in 1973; before then all encryption schemes were symmetric-key (also called private-key).

A publicly available public key encryption application called Pretty Good Privacy (PGP) was written in 1991 by Phil Zimmermann, and distributed free of charge with source code; it was purchased by Symantec in 2010 and is regularly updated.

Encryption has long been used by militaries and governments to facilitate secret communication. It is now commonly used in protecting information within many kinds of civilian systems. For example, the Computer Security Institute reported that in 2007, 71% of companies surveyed utilized encryption for some of their data in transit, and 53% utilized encryption for some of their data in storage. Encryption can be used to protect data "at rest", such as information stored on computers and storage devices (e.g. USB flash drives). In recent years, there have been numerous reports of confidential data, such as customers' personal records, being exposed through loss or theft of laptops or backup drives. Encrypting such files at rest helps protect them should physical security measures fail. Digital rights management systems, which prevent unauthorized use or reproduction of copyrighted material and protect software against reverse engineering (see also copy protection), is another somewhat different example of using encryption on data at rest.


...
Wikipedia

...