*** Welcome to piglix ***

Dataflow programming


In computer programming, dataflow programming is a programming paradigm that models a program as a directed graph of the data flowing between operations, thus implementing dataflow principles and architecture. Dataflow programming languages share some features of functional languages, and were generally developed in order to bring some functional concepts to a language more suitable for numeric processing. Some authors use the term Datastream instead of Dataflow to avoid confusion with Dataflow Computing or Dataflow architecture, based on an indeterministic machine paradigm. Dataflow programming was pioneered by Jack Dennis and his graduate students at MIT in the 1960s.

Traditionally, a program is modelled as a series of operations happening in a specific order; this may be referred to as sequential, procedural,Control flow (indicating that the program chooses a specific path), or imperative programming. The program focuses on commands, in line with the von Neumann vision of sequential programming, where data is normally "at rest"

In contrast, dataflow programming emphasizes the movement of data and models programs as a series of connections. Explicitly defined inputs and outputs connect operations, which function like black boxes. An operation runs as soon as all of its inputs become valid. Thus, dataflow languages are inherently parallel and can work well in large, decentralized systems.

One of the key concepts in computer programming is the idea of state, essentially a snapshot of various conditions in the system. Most programming languages require a considerable amount of state information, which is generally hidden from the programmer. Often, the computer itself has no idea which piece of information encodes the enduring state. This is a serious problem, as the state information needs to be shared across multiple processors in parallel processing machines. Most languages force the programmer to add extra code to indicate which data and parts of the code are important to the state. This code tends to be both expensive in terms of performance, as well as difficult to read or debug. Explicit parallelism is one of the main reasons for the poor performance of Enterprise Java Beans when building data-intensive, non-OLTP applications.


...
Wikipedia

...