*** Welcome to piglix ***

Data deduplication


In computing, data deduplication is a specialized data compression technique for eliminating duplicate copies of repeating data. Related and somewhat synonymous terms are intelligent (data) compression and single-instance (data) storage. This technique is used to improve storage utilization and can also be applied to network data transfers to reduce the number of bytes that must be sent. In the deduplication process, unique chunks of data, or byte patterns, are identified and stored during a process of analysis. As the analysis continues, other chunks are compared to the stored copy and whenever a match occurs, the redundant chunk is replaced with a small reference that points to the stored chunk. Given that the same byte pattern may occur dozens, hundreds, or even thousands of times (the match frequency is dependent on the chunk size), the amount of data that must be stored or transferred can be greatly reduced.

This type of deduplication is different from that performed by standard file-compression tools, such as LZ77 and LZ78. Whereas these tools identify short repeated substrings inside individual files, the intent of storage-based data deduplication is to inspect large volumes of data and identify large sections – such as entire files or large sections of files – that are identical, in order to store only one copy of it. This copy may be additionally compressed by single-file compression techniques. For example, a typical email system might contain 100 instances of the same 1 MB (megabyte) file attachment. Each time the email platform is backed up, all 100 instances of the attachment are saved, requiring 100 MB storage space. With data deduplication, only one instance of the attachment is actually stored; the subsequent instances are referenced back to the saved copy for deduplication ratio of roughly 100 to 1.

Deduplication may occur "in-line", as data is flowing, or "post-process" after it has been written.

With post-process deduplication, new data is first stored on the storage device and then a process at a later time will analyze the data looking for duplication. The benefit is that there is no need to wait for the hash calculations and lookup to be completed before storing the data, thereby ensuring that store performance is not degraded. Implementations offering policy-based operation can give users the ability to defer optimization on "active" files, or to process files based on type and location. One potential drawback is that duplicate data may be unnecessarily stored for a short time, which can be problematic if the system is nearing full capacity.


...
Wikipedia

...