Data integration involves combining data residing in different sources and providing users with a unified view of these data. This process becomes significant in a variety of situations, which include both commercial (when two similar companies need to merge their databases) and scientific (combining research results from different bioinformatics repositories, for example) domains. Data integration appears with increasing frequency as the volume and the need to share existing data explodes. It has become the focus of extensive theoretical work, and numerous open problems remain unsolved.
Issues with combining heterogeneous data sources, often referred to as information silos, under a single query interface have existed for some time. In the early 1980s, computer scientists began designing systems for interoperability of heterogeneous databases. The first data integration system driven by structured metadata was designed at the University of Minnesota in 1991, for the Integrated Public Use Microdata Series (IPUMS). IPUMS used a data warehousing approach, which extracts, transforms, and loads data from heterogeneous sources into a single view schema so data from different sources become compatible. By making thousands of population databases interoperable, IPUMS demonstrated the feasibility of large-scale data integration. The data warehouse approach offers a tightly coupled architecture because the data are already physically reconciled in a single queryable repository, so it usually takes little time to resolve queries.
The data warehouse approach is less feasible for datasets that are frequently updated, requiring the ETL process to be continuously re-executed for synchronization. Difficulties also arise in constructing data warehouses when one has only a query interface to summary data sources and no access to the full data. This problem frequently emerges when integrating several commercial query services like travel or classified advertisement web applications.