The Dashaveyor was an automated guideway transit (AGT) system developed during the 1960s and '70s.
Originally developed by the Dashaveyor Company for moving cargo, the system used motorized pallets that could be routed on the fly to any destination in an extended network. The pallets could run at high speeds between stations, climb steep grades at slower speeds, and even climb vertically. They were designed to replace several manned vehicles with a single automated one, controlled from a central operating station. One such system was installed and operated at the White Pine mine from 1968 to 1972, but was considered a failure.
Bendix Corporation purchased the rights to the basic Dashaveyor system in order to use it as the basis for an AGT system during the heyday of urban transport research in the late 1960s. Often referred to as the Bendix-Dashaveyor in this form, the system used the basic design of the cargo system, but with a larger passenger body running on rubber wheels. Only one such system was installed, the 5 km long Toronto Zoo Domain Ride which operated from 1976 until a lack of proper maintenance led to an accident that forced its closure in 1994.
The Dashaveyor concept started with Stanley Dashew, a prolific inventor who is best known for building the embossing machines used to produce the BankAmericard, the first plastic bank credit card system, which later evolved into Visa.
Dashew moved into the area of offshore oil loading in the 1960s, and was instrumental in the creation of the single-point mooring systems used in modern terminals, as well as the omnidirectional thrusters used to maneuver the ships up to the moors. As a part of these developments, Dashew became interested in using similar offshore mooring to handle bulk freight as well, especially container shipping which was rapidly dominating the industry. After consulting with experts in the automated warehousing field for several months, he incorporated the Dashveyor Company in 1963 in California to develop these ideas.
The company's solution to this problem was an automated conveyor, similar to the track-based systems being introduced for industrial automation and warehousing systems. Unlike those systems, however, the mooring points were so far offshore that the movement from the ship to the land-side terminal would be a significant delay. The system they designed operated at speeds up to 80 mph (130 km/h) in order to reduce these delays. A variety of options were available to improve flexibility. The cars were normally powered by two electric motors spinning steel wheels that ran on steel rails at high speeds, but could optionally include a traction gear that engaged rack gears between the running rails that allowed them to climb high grades at lower speeds. Optional elevator-like systems allowed the cars to move vertically as well.