*** Welcome to piglix ***

Daisyworld


Daisyworld, a computer simulation, is a hypothetical world orbiting a star whose radiant energy is slowly increasing or decreasing. It is meant to mimic important elements of the Earth-Sun system, and was introduced by James Lovelock and Andrew Watson in a paper published in 1983 to illustrate the plausibility of the Gaia hypothesis. In the original 1983 version, Daisyworld is seeded with two varieties of daisy as its only life forms: black daisies and white daisies. White petaled daisies reflect light, while black petaled daisies absorb light. The simulation tracks the two daisy populations and the surface temperature of Daisyworld as the sun's rays grow more powerful. The surface temperature of Daisyworld remains almost constant over a broad range of solar output.

The purpose of the model is to demonstrate that feedback mechanisms can evolve from the actions or activities of self-interested organisms, rather than through classic group selection mechanisms. Daisyworld examines the energy budget of a planet populated by two different types of plants, black daisies and white daisies. The colour of the daisies influences the albedo of the planet such that black daisies absorb light and warm the planet, while white daisies reflect light and cool the planet. Competition between the daisies (based on temperature-effects on growth rates) leads to a balance of populations that tends to favour a planetary temperature close to the optimum for daisy growth.

Lovelock and Watson demonstrated the stability of Daisyworld by making its sun evolve along the main sequence, taking it from low to high solar constant. This perturbation of Daisyworld's receipt of solar radiation caused the balance of daisies to gradually shift from black to white but the planetary temperature was always regulated back to this optimum (except at the extreme ends of solar evolution). This situation is very different from the corresponding abiotic world, where temperature is unregulated and rises linearly with solar output.


...
Wikipedia

...