DNA sequencing theory is the broad body of work that attempts to lay analytical foundations for determining the order of specific nucleotides in a sequence of DNA, otherwise known as DNA sequencing. The practical aspects revolve around designing and optimizing sequencing projects (known as "strategic genomics"), predicting project performance, troubleshooting experimental results, characterizing factors such as sequence bias and the effects of software processing algorithms, and comparing various sequencing methods to one another. In this sense, it could be considered a branch of systems engineering or operations research. The permanent archive of work is primarily mathematical, although numerical calculations are often conducted for particular problems too. DNA sequencing theory addresses physical processes related to sequencing DNA and should not be confused with theories of analyzing resultant DNA sequences, e.g. sequence alignment. Publications sometimes do not make a careful distinction, but the latter are primarily concerned with algorithmic issues. Sequencing theory is based on elements of mathematics, biology, and systems engineering, so it is highly interdisciplinary. The subject may be studied within the context of computational biology.
All mainstream methods of DNA sequencing rely on reading small fragments of DNA and subsequently reconstructing these data to infer the original DNA target, either via assembly or alignment to a reference. The abstraction common to these methods is that of a mathematical covering problem. For example, one can imagine a line segment representing the target and a subsequent process where smaller segments are "dropped" onto random locations of the target. The target is considered "sequenced" when adequate coverage accumulates (e.g., when no gaps remain).